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Meton: Ah! These are my
special rods for measuring the
air ... so all I have to do is to
attach this flexible rod at the
upper extremity, take the
compasses, insert the point here,
and - you see what I mean?
Peisthetaerus: No.
Meton: Well I now apply the
straight rod - so - thus squaring
the circle: and there you are.

Aristophanes, ’Birds’
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1 Introduction

In 1882, in Freiburg in Germany, Ferdinand von Lindemann disproved a
conjecture which had stood unproven for the previous two millennia. This
problem, one of the most obstinate in academic history, finally fell to the
relentless tide of mathematical endeavour and discovery; Lindemann had
disproved the possibility of squaring the circle.

1.1 Squaring the Circle

Squaring the Circle is one of the oldest questions in mathematics. Although
the earliest dat of its study is not known, it is thought to date to before
428BC and was well known even at that time[4, 8]. Its statement is simple:

Conjecture. Squaring the Circle, Version 1:
Given a circle of unit radius, it is possible to construct a square of the same
area in finitely many steps using only an idealised straight edge and compass.

Despite its apparent triviality, its proof (or disproof) has been pondered
by some of the greatest minds in mathematics. Given its antiquity, it should
not be surprising that is also one of the most famous problems in mathe-
matics. Indeed, the phrase “like squaring the circle” has entered the English
language in its own right, to describe an impossible task.1

1.2 Notoriety

To modern readers, given the synonymy of “squaring the circle” with the
word “impossible”, it may be surprising that it was thought by many to be
possible until the mid 19th century[5]. In fact even after it was disproved am-
ateur mathematicians continued to publish false ‘proofs’, to mixed responses
of acclaim and ridicule.2 This was at least in part due to a misunderstanding
of what the question was actually asking, and how it was disproved. In light
of this, let us begin to consider the solution.

1This makes researching it very difficult. The phrase is used in the titles of articles in
fields from economics to psychology to nuclear physics.

2Most famously, in 1897 Edward J. Goodwin attempted to have the Indiana General
Assembly pass a bill declaring his method of squaring the circle as fact. It implicitly
redefined π as 3.2, and was eventually rejected. [6]
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2 Compasses and Straight Edges

Before we can understand Lindemann’s approach to the question, we need to
understand more about compass and straight edge constructions, and what
it means for a number to be constructible.

2.1 Elementary Constructions

Most people come into contact with compass and straight edge constructions
in high school. The idea is to construct shapes, angles, and lengths using an
‘idealised compass and straight edge’; a pair of compasses which can stretch
infinitely far and an infinitely long ruler with no distances marked on.
Using these tools, we can:

• draw a line passing through two points

• extend an existing line indefinitely

• draw a circle about a point which passes through another point

• define points at the intersections of lines (and/or circles)

and nothing else. This limited set of operations allows us construct a lot
of things: squares, equilateral triangles, perpendicular bisectors through
points, bisectors of angles, and many more.3 As well as this, there is some
notion of arithmetic which we can perform with these tools. It is this that
shall be explored in this chapter.

Figure 1: The basic operations which can be done within compass and
straight edge constructions. [1]

3The proofs and constructions of these objects are not given in this essay, but can be
found for example in Book 1 of Euclid’s Elements [3]
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2.2 Constructible Numbers

The constructible numbers are the numbers we can ‘make’ using a pair of
compasses and a straight edge. There are two slightly different ways of
defining them:

2.2.1 Ancient Greek definition

Definition. (Ancient Greek definition) Take some line segment in the plane
and call it length 1. Then we say a number n ∈ R>0 is constructible if,
using a compass and straight edge, we can create a line segment of length n
in finitely many steps.

For example, these are all constructible numbers according to the Greek
definition:

• 3 ∈ Z

• 1
2 ∈ Q

•
√

2 ∈ R\Q
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2.2.2 Modern definition

The definition above was the one used by the Ancient Greeks, but we can
expand it to the more modern idea of the complex plane in an intuitive way.
We begin by considering the given initial unit line to be the line between
(0, 0) and (1, 0) in the complex plane. We then define some concepts:

Definition. A point (x, y) in the plane is called a constructible point if a
series of straight lines and circles may be drawn starting from the unit line
such that (x, y) is the intersection point of

• Two lines,

• Two circles, or

• A line and a circle

Definition. A number α = a+bi ∈ C is a constructible number if the point
(a, b) in the plane is a constructible point.

This definition allows us to precisely define the numbers we can draw
with these tools: the compasses and straight edge only let us draw circles
and straight lines, so any point we can define is the intersection of some
combination of these. Further, any line segment can only be defined by
the points which mark its endpoints4. Hence the numbers we can reach
are controlled precisely by the points we can create as intersections of these
elements.

Note in particular that this new definition works with our other defini-
tion for positive real numbers: if a line of some length β ∈ R>0 can be drawn
in the plane, we can imagine setting our compasses to the length of this line
and drawing a circle of radius β about the origin. This circle will intersect
the line y = 0 at (β, 0), and so β is constructible by our new definition (the
same clearly works in the other direction for R>0).

4This the third definition of Book 1 of Euclid’s Elements [3]
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2.3 Closure of the Constructible Numbers

Now that we have defined what the constructible numbers are, we consider
what we can do with them.

Claim. The only five operations which can be done using a pair of compasses
and a straight edge are +,−,×,÷, and

√
.

This is a long proof, which works based on considering the possible inter-
section points of a general circle and straight line in Cartesian coordinates.
The proof is omitted here but can be found in [2]. For a flavour, we shall
see how to take square roots:

Proof. (Square roots can be taken using a compass and straight edge)
Let α := a+ bi be constructible. Construct line of length |α|+ 1 and draw
a circle with this line as its diameter. Construct a perpendicular to the
diameter 1 unit from its intersection with the circle. The length of this
perpendicular between the diameter and the circle is

√
|α| = |

√
α|.

Then draw the line connecting α and the origin. Using results from
[3] we can bisect the angle between this line and the positive x-axis. The
intersection of this bisecting line and a circle about the origin of radius |

√
α|

is the point
√
α, which can be easily shown by considering that

α = reiθ, r ∈ R>0, θ ∈ [0, 2π]

and so √
α =
√
rei

θ
2

2.3.1 Classification by Towers of Sets

Since we already know that we can easily construct any rational, we can
now completely classify the constructible numbers as the quadratic closure
of the rational numbers5. To consider this a little more rigorously:

Definition. We may define a set K of sequences of sets (Kn) as follows:

K0 := Q
Ki+1 := {a+ b

√
ci : a, b ∈ Ki} for some fixed ci ∈ Ki.

Note that the sequence (Kn) ∈ K then depends on the choices of ci. Then
we can say that the set of constructible numbers is

{x ∈ C : x ∈ Ki for some i <∞, where Ki ∈ (Kn) for some (Kn) ∈ K}

Which is precisely the set of all numbers which can be reached using finitely
many applications of the operations +,−,×,÷, and

√
.

With this behind us, we can see where π stands with the constructible
numbers.

5the smallest field containing the rationals which is closed under square roots
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2.4 Lindemann’s Approach to Squaring the Circle

Lindemann’s solution to the problem of Squaring the Circle uses an alter-
native phrasing of the conjecture:

Conjecture. Squaring the Circle, Version 2
The number π is constructible.

Proof. (Equivalence of conjectures)
Version 1 ⇒ Version 2:
Take a unit circle in the plane. The area of this circle is

πr2 = π × 12 = π

Hence any square with the same area as this circle has area π, and so side
length

√
π. Then π is constructible by squaring this side length.

Version 1 ⇐ Version 2:
π is constructible ⇒

√
π is constructible, since the constructible numbers

are closed under square roots. Then constructing a square with a given side
length is trivial using the elementary constructions above (a full construction
is given in [3]). This square will have area

√
π
2

= π = Area of unit circle

Using this reduction of the question, Lindemann was able to see this not
as a question of geometry but of algebra. If the problem of squaring the
circle were impossible, all that would be required to prove it would be to
show that π is not constructible.
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3 Algebraic Numbers

We now examine a set of numbers which may seem tangential to our ques-
tion, but is in fact very useful: the algebraic numbers.

3.1 The algebraic numbers

Definition. (From [10]) A number α ∈ R is called algebraic over Q (or
just algebraic) if there exists a nonzero polynomial f with coefficients in
Q such that f(α) = 0. A number x ∈ R which is not algebraic is called
transcendental. We define the set of algebraic numbers as Q̄.

Some common examples of algebraic numbers are:

• a
b ∈ Q, the root of bx− a = 0

• n
√
a, a ∈ Z, a root of xn − a = 0

• i ∈ C, a root of x2 + 1 = 0

3.2 Classification of the algebraic numbers

The algebraic numbers are actually a field, but before we can show this we
must first understand the following theorem.

3.2.1 Fundamental Theorem of Symmetric Functions

Definition. A symmetric function in n variables is a function f such that
for any permutation σ ∈ Sn,

f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n))

i.e. changing the order of the variables does not change the value of the
function. For example,

f(x, y) := x2y3 + x3y2 (1)

is a symmetric function in two variables.

Definition. The elementary symmetric functions in n variables

{ei : i ∈ {1, . . . , n}}

are the symmetric functions formed by taking sums of groups of variables i
at a time. For example,

e1 := x1 + · · ·+ xn

e2 := x1x2 + x1x3 + · · ·+ xn−1xn

e3 := x1x2 . . . xn

.
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Theorem. (Fundamental Theorem of Symmetric Functions)
For any symmetric function f ∈ K[x1, . . . , xn], there is some function g ∈
K[e1, . . . , en] such that

f(x1, . . . , xn) = g(e1, . . . , en)

For example using (1),

f(x, y) = x2y3 + x3y2

= (x+ y)(x2y2)

= (x+ y)(xy)2

= e1(e2)
2

Proof. The proof is omitted for the sake of brevity here, but may be found
in [9].

3.2.2 Closure of the algebraic numbers

We can now use the previous theorem to prove our claim.

Claim. The algebraic numbers are a field.

Proof. (Adapted from [9]) Note firstly that Q̄ ⊂ C which is a field, so we
need only show closure of Q̄ under addition and multiplication, and the
existence of inverses within the set.

Let α, β ∈ Q̄ Then there exist polynomials with integer coefficients

f(x) := fnx
n + . . . f1x+ f0, and

g(x) := gmx
m + . . . g1x+ g0

such that f(α) = 0 and g(β) = 0.

1. α is a root of f(x), so −α is a root of f(−x) which clearly has integer
coefficients. Hence −α ∈ Q̄.

2. Since α is a root of f,

f(α) = fnα
n + . . . f1α+ f0 = 0

Multiplying both sides by α−n, we get

fn + . . . f1α
n−1 + f0α

−n = 0

Hence α−1 is a root of f̄(x) := f0x
n . . . fn−1x+ fn, and α−1 ∈ Q̄
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3. Let {α = α1, α2, . . . , αn} be the roots of f , and {β = β1, β2, . . . , βm}
be the roots of g, so

f(x) =
n∏
i=1

(x− αi) and

g(x) =
m∏
j=1

(x− βj)

We then define a function F as

F (x) :=
n∏
i=1

m∏
j=1

(x− (αi + βj))

Clearly (α+ β) = (α1 + β1) is a root of F , so we need only show that
F has rational coefficients.

If we consider the expansion of F , it’s clear that the coefficients of
x are symmetric polynomials in α1, α2, . . . , αn and β1, β2, . . . , βm. If
we fix one of these coefficients, we can consider it as a polynomial in
{α1, α2, . . . , αn} with coefficients in Q[β1, β2, . . . , βm]. Since it is sym-
metric, we know by the Fundamental Theorem of Symmetric Poly-
nomials (3.2.1) that it is also a polynomial in the symmetric sums
e1, . . . , en of the αis with coefficients in Q[β1, β2, . . . , βm]. Since we
also know that all of the symmetric sums e1, . . . , en are coefficients
in f , we know that they are all rational. Hence each coefficient of F
is a symmetric polynomial in β1, β2, . . . , βm with rational coefficients.
Using the Fundamental Theorem of Symmetric Functions again in the
same way, we can see that the symmetric sums e′1, . . . , e

′
n of the βis are

also rational numbers, since they are the coefficients of g. Therefore
all of the coefficients of F are rational, and so (α+ β) ∈ Q̄.

4. Use the exact same argument as in 3, but letting

F (x) :=

n∏
i=1

m∏
j=1

(x− αiβj)
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3.3 Relation to the constructible numbers

Claim. Let α be a constructible number, so α ∈ Kr for some r ∈ N and (Kn) ∈
K. Then for every l ≤ r, α is a root of some polynomial of order 2l with
coefficients in Kr−l.

Proof. We will proceed by induction on l.
Clearly α satisfies the polynomial (x − α) = 0, which has order 20 = 1

and coefficients in Kr.
Assume then that α is the root of some polynomial of order 2n−1 and coef-
ficients in Kr−(n−1). Then we may write this polynomial (after dividing by
the leading coefficient if necessary) as

x2
n−1

+ a(2n−1−1)x
(2n−1−1) + · · ·+ a1x+ a0 = 0

where each ai ∈ Kr−(n−1). Then we know that if n ≤ r each ai may be

written as ai = βi − γi
√
C, for some βi, γi and fixed C ∈ Kr−n.

Then we can rewrite the above equation as

x2
n−1

+ · · ·+ (βn − γn
√
C)xn + · · ·+ (β1 − γ1

√
C)x+ (β0 − γ0

√
C) = 0

and so

x2
n−1

+ · · ·+ βnx
n + · · ·+ β1x+ β0 =

√
C(· · ·+ γnx

n + · · · − γ1x+ γ0)

Then we can square both sides and see that

(x2
n−1

+ · · ·+ βnx
n + · · ·+ β1x+ β0)

2−C(· · ·+ γnx
n + · · ·+ γ1x+ γ0)

2 = 0

Which is a polynomial with coefficients in Kr−n and order 2(2n−1) = 2n.
Since all we have done is rearrange, α is still a root. Hence by induction the
proposition holds for all l ≤ r.

Theorem. If α ∈ C is constructible, then α is algebraic.

Proof. By setting l = r in the previous result, we can see that if α is a
constructible number, then it is the root of a polynomial with coefficients in
K0 = Q and so is algebraic.

This is an important result for our problem. We showed in 2.4 that it is
possible to square the circle only if π is constructible. We now know that

π is constructible⇒ π is algebraic.

Hence if we can show that π is transcendental, then it cannot be con-
structible, and so it is impossible to square the circle.
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4 The Transcendental Nature of π

In order to prove that π is transcendental, Lindemann proved a very elegant
theorem, which now bears his name along with that of his contemporary
Karl Weierstrass, who generalised it to the version below.

4.1 Lindemann-Weierstrass Theorem

Before we state the theorem, first let us define algebraic independence.

Definition. A set of numbers {α1, . . . , αk} is algebraically independent
over a field K if every polynomial f : Ck → C with coefficients in K has
f(α1, . . . , αk) 6= 0

For example, the set {2π2 +e, π, e} is not algebraically independent over
Q since if f(x, y, z) := x− 2y2 − z then

f(2π + e, π, e) = (2π2 + e)− 2(π)2 − (e) = 0

Theorem. (Lindemann-Weierstrass) Let a1, a2, . . . , an be algebraic numbers
which are linearly independent over Q, i.e.:

b1, b2, . . . , bn ∈ Q and b1a1 + b2a2 + . . .+ bnan = 0⇒ bi = 0 ∀i

Then ea1 , ea2 , . . . ean are algebraically independent over Q.

This theorem has an extremely long and complicated proof, which may
be found in its entirety in [7] but is omitted in this essay.

Corollary. In particular in the case where n = 1 above, if α is an algebraic
number, eα is transcendental, since it is not the root of a polynomial in one
variable with rational coefficients.

Using this, we can prove that π is transcendental easily.

Proof. Assume for the sake of contradiction that π is algebraic. We already
know that i is an algebraic number and that the algebraic numbers form a
field, so clearly iπ is an algebraic number. But then by the corollary above,
we would have that eiπ is transcendental.

Clearly this is not the case, since by Euler’s Identity

eiπ = −1

So then we have a contradiction and our assumption was wrong - and so π
is transcendental.

Hence, by proving this theorem, Lindemann had solved the
ancient problem of Squaring the Circle, and proved that it is,
indeed, impossible.
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5 Conclusion

Lindemann’s exposition of this elusive truth is noteworthy not just for the
result itself but also for the paradigm shift it represents. For thousands of
years, mathematics was dominated by geometry, and geometric approaches
to long standing problems. In the 19th century, great minds used the new
tools of rigorous algebra and analysis to shine light over the hidden con-
nections between distinct areas of mathematics. New approaches simul-
taneously broadened mathematics and brought it closer together, allowing
previously intractable problems to reveal themselves. In this way, Squar-
ing the Circle is exemplary of how mathematics must expand in order to
advance, and how the ripples of new ideas can be felt even in seemingly
unconnected areas.
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